
Perl version 5.10.0 documentation - perltoot

Page 1http://perldoc.perl.org

NAME
perltoot - Tom's object-oriented tutorial for perl

DESCRIPTION
Object-oriented programming is a big seller these days. Some managers
 would rather have objects
than sliced bread. Why is that? What's so
 special about an object? Just what is an object anyway?

An object is nothing but a way of tucking away complex behaviours into
 a neat little easy-to-use
bundle. (This is what professors call
 abstraction.) Smart people who have nothing to do but sit around
for
 weeks on end figuring out really hard problems make these nifty
 objects that even regular people
can use. (This is what professors call
 software reuse.) Users (well, programmers) can play with this
little
 bundle all they want, but they aren't to open it up and mess with the
 insides. Just like an
expensive piece of hardware, the contract says
 that you void the warranty if you muck with the cover.
So don't do that.

The heart of objects is the class, a protected little private namespace
 full of data and functions. A
class is a set of related routines that
 addresses some problem area. You can think of it as a
user-defined type.
 The Perl package mechanism, also used for more traditional modules,
 is used for
class modules as well. Objects "live" in a class, meaning
 that they belong to some package.

More often than not, the class provides the user with little bundles.
 These bundles are objects. They
know whose class they belong to,
 and how to behave. Users ask the class to do something, like "give

me an object." Or they can ask one of these objects to do something.
 Asking a class to do something
for you is calling a class method.
 Asking an object to do something for you is calling an object method
.
 Asking either a class (usually) or an object (sometimes) to give you
 back an object is calling a
constructor, which is just a
 kind of method.

That's all well and good, but how is an object different from any other
 Perl data type? Just what is an
object really; that is, what's its
 fundamental type? The answer to the first question is easy. An object
 is
different from any other data type in Perl in one and only one way:
 you may dereference it using not
merely string or numeric subscripts
 as with simple arrays and hashes, but with named subroutine
calls.
 In a word, with methods.

The answer to the second question is that it's a reference, and not just
 any reference, mind you, but
one whose referent has been bless()ed
 into a particular class (read: package). What kind of
reference? Well,
 the answer to that one is a bit less concrete. That's because in Perl
 the designer of
the class can employ any sort of reference they'd like
 as the underlying intrinsic data type. It could be
a scalar, an array,
 or a hash reference. It could even be a code reference. But because
 of its inherent
flexibility, an object is usually a hash reference.

Creating a Class
Before you create a class, you need to decide what to name it. That's
 because the class (package)
name governs the name of the file used to
 house it, just as with regular modules. Then, that class
(package)
 should provide one or more ways to generate objects. Finally, it should
 provide
mechanisms to allow users of its objects to indirectly manipulate
 these objects from a distance.

For example, let's make a simple Person class module. It gets stored in
 the file Person.pm. If it were
called a Happy::Person class, it would
 be stored in the file Happy/Person.pm, and its package would
become
 Happy::Person instead of just Person. (On a personal computer not
 running Unix or Plan 9,
but something like Mac OS or VMS, the directory
 separator may be different, but the principle is the
same.) Do not assume
 any formal relationship between modules based on their directory names.
 This
is merely a grouping convenience, and has no effect on inheritance,
 variable accessibility, or anything
else.

For this module we aren't going to use Exporter, because we're
 a well-behaved class module that
doesn't export anything at all.
 In order to manufacture objects, a class needs to have a constructor

method. A constructor gives you back not just a regular data type,
 but a brand-new object in that
class. This magic is taken care of by
 the bless() function, whose sole purpose is to enable its referent

Perl version 5.10.0 documentation - perltoot

Page 2http://perldoc.perl.org

to
 be used as an object. Remember: being an object really means nothing
 more than that methods
may now be called against it.

While a constructor may be named anything you'd like, most Perl
 programmers seem to like to call
theirs new(). However, new() is not
 a reserved word, and a class is under no obligation to supply
such.
 Some programmers have also been known to use a function with
 the same name as the class
as the constructor.

Object Representation
By far the most common mechanism used in Perl to represent a Pascal
 record, a C struct, or a C++
class is an anonymous hash. That's because a
 hash has an arbitrary number of data fields, each
conveniently accessed by
 an arbitrary name of your own devising.

If you were just doing a simple
 struct-like emulation, you would likely go about it something like this:

 $rec = {
 name => "Jason",
 age => 23,
 peers => ["Norbert", "Rhys", "Phineas"],
 };

If you felt like it, you could add a bit of visual distinction
 by up-casing the hash keys:

 $rec = {
 NAME => "Jason",
 AGE => 23,
 PEERS => ["Norbert", "Rhys", "Phineas"],
 };

And so you could get at $rec->{NAME} to find "Jason", or @{ $rec->{PEERS} } to get at
"Norbert", "Rhys", and "Phineas".
 (Have you ever noticed how many 23-year-old programmers seem
to
 be named "Jason" these days? :-)

This same model is often used for classes, although it is not considered
 the pinnacle of programming
propriety for folks from outside the
 class to come waltzing into an object, brazenly accessing its data

members directly. Generally speaking, an object should be considered
 an opaque cookie that you use
object methods to access. Visually,
 methods look like you're dereffing a reference using a function
name
 instead of brackets or braces.

Class Interface
Some languages provide a formal syntactic interface to a class's methods,
 but Perl does not. It relies
on you to read the documentation of each
 class. If you try to call an undefined method on an object,
Perl won't
 complain, but the program will trigger an exception while it's running.
 Likewise, if you call a
method expecting a prime number as its argument
 with a non-prime one instead, you can't expect the
compiler to catch this.
 (Well, you can expect it all you like, but it's not going to happen.)

Let's suppose you have a well-educated user of your Person class,
 someone who has read the docs
that explain the prescribed
 interface. Here's how they might use the Person class:

 use Person;

 $him = Person->new();
 $him->name("Jason");
 $him->age(23);
 $him->peers("Norbert", "Rhys", "Phineas");

 push @All_Recs, $him; # save object in array for later

Perl version 5.10.0 documentation - perltoot

Page 3http://perldoc.perl.org

 printf "%s is %d years old.\n", $him->name, $him->age;
 print "His peers are: ", join(", ", $him->peers), "\n";

 printf "Last rec's name is %s\n", $All_Recs[-1]->name;

As you can see, the user of the class doesn't know (or at least, has no
 business paying attention to
the fact) that the object has one particular
 implementation or another. The interface to the class and
its objects
 is exclusively via methods, and that's all the user of the class should
 ever play with.

Constructors and Instance Methods
Still, someone has to know what's in the object. And that someone is
 the class. It implements
methods that the programmer uses to access
 the object. Here's how to implement the Person class
using the standard
 hash-ref-as-an-object idiom. We'll make a class method called new() to
 act as the
constructor, and three object methods called name(), age(), and
 peers() to get at per-object data
hidden away in our anonymous hash.

 package Person;
 use strict;

 ##
 ## the object constructor (simplistic version) ##
 ##
 sub new {
 my $self = {};
 $self->{NAME} = undef;
 $self->{AGE} = undef;
 $self->{PEERS} = [];
 bless($self); # but see below
 return $self;
 }

 ##
 ## methods to access per-object data ##
 ## ##
 ## With args, they set the value. Without ##
 ## any, they only retrieve it/them. ##
 ##

 sub name {
 my $self = shift;
 if (@_) { $self->{NAME} = shift }
 return $self->{NAME};
 }

 sub age {
 my $self = shift;
 if (@_) { $self->{AGE} = shift }
 return $self->{AGE};
 }

 sub peers {
 my $self = shift;
 if (@_) { @{ $self->{PEERS} } = @_ }
 return @{ $self->{PEERS} };

Perl version 5.10.0 documentation - perltoot

Page 4http://perldoc.perl.org

 }

 1; # so the require or use succeeds

We've created three methods to access an object's data, name(), age(),
 and peers(). These are all
substantially similar. If called with an
 argument, they set the appropriate field; otherwise they return
the
 value held by that field, meaning the value of that hash key.

Planning for the Future: Better Constructors
Even though at this point you may not even know what it means, someday
 you're going to worry
about inheritance. (You can safely ignore this
 for now and worry about it later if you'd like.) To ensure
that this
 all works out smoothly, you must use the double-argument form of bless().
 The second
argument is the class into which the referent will be blessed.
 By not assuming our own class as the
default second argument and instead
 using the class passed into us, we make our constructor
inheritable.

 sub new {
 my $class = shift;
 my $self = {};
 $self->{NAME} = undef;
 $self->{AGE} = undef;
 $self->{PEERS} = [];
 bless ($self, $class);
 return $self;
 }

That's about all there is for constructors. These methods bring objects
 to life, returning neat little
opaque bundles to the user to be used in
 subsequent method calls.

Destructors
Every story has a beginning and an end. The beginning of the object's
 story is its constructor,
explicitly called when the object comes into
 existence. But the ending of its story is the destructor, a
method
 implicitly called when an object leaves this life. Any per-object
 clean-up code is placed in the
destructor, which must (in Perl) be called
 DESTROY.

If constructors can have arbitrary names, then why not destructors?
 Because while a constructor is
explicitly called, a destructor is not.
 Destruction happens automatically via Perl's garbage collection
(GC)
 system, which is a quick but somewhat lazy reference-based GC system.
 To know what to call,
Perl insists that the destructor be named DESTROY.
 Perl's notion of the right time to call a destructor
is not well-defined
 currently, which is why your destructors should not rely on when they are
 called.

Why is DESTROY in all caps? Perl on occasion uses purely uppercase
 function names as a
convention to indicate that the function will
 be automatically called by Perl in some way. Others that
are called
 implicitly include BEGIN, END, AUTOLOAD, plus all methods used by
 tied objects,
described in perltie.

In really good object-oriented programming languages, the user doesn't
 care when the destructor is
called. It just happens when it's supposed
 to. In low-level languages without any GC at all, there's no
way to
 depend on this happening at the right time, so the programmer must
 explicitly call the
destructor to clean up memory and state, crossing
 their fingers that it's the right time to do so. Unlike
C++, an
 object destructor is nearly never needed in Perl, and even when it is,
 explicit invocation is
uncalled for. In the case of our Person class,
 we don't need a destructor because Perl takes care of
simple matters
 like memory deallocation.

The only situation where Perl's reference-based GC won't work is
 when there's a circularity in the data
structure, such as:

Perl version 5.10.0 documentation - perltoot

Page 5http://perldoc.perl.org

 $this->{WHATEVER} = $this;

In that case, you must delete the self-reference manually if you expect
 your program not to leak
memory. While admittedly error-prone, this is
 the best we can do right now. Nonetheless, rest assured
that when your
 program is finished, its objects' destructors are all duly called.
 So you are guaranteed
that an object eventually gets properly
 destroyed, except in the unique case of a program that never
exits.
 (If you're running Perl embedded in another application, this full GC
 pass happens a bit more
frequently--whenever a thread shuts down.)

Other Object Methods
The methods we've talked about so far have either been constructors or
 else simple "data methods",
interfaces to data stored in the object.
 These are a bit like an object's data members in the C++ world,
except
 that strangers don't access them as data. Instead, they should only
 access the object's data
indirectly via its methods. This is an
 important rule: in Perl, access to an object's data should only
 be
made through methods.

Perl doesn't impose restrictions on who gets to use which methods.
 The public-versus-private
distinction is by convention, not syntax.
 (Well, unless you use the Alias module described below in
Data Members as Variables.) Occasionally you'll see method names beginning or ending
 with an
underscore or two. This marking is a convention indicating
 that the methods are private to that class
alone and sometimes to its
 closest acquaintances, its immediate subclasses. But this distinction
 is not
enforced by Perl itself. It's up to the programmer to behave.

There's no reason to limit methods to those that simply access data.
 Methods can do anything at all.
The key point is that they're invoked
 against an object or a class. Let's say we'd like object methods
that
 do more than fetch or set one particular field.

 sub exclaim {
 my $self = shift;
 return sprintf "Hi, I'm %s, age %d, working with %s",
 $self->{NAME}, $self->{AGE}, join(", ", @{$self->{PEERS}});
 }

Or maybe even one like this:

 sub happy_birthday {
 my $self = shift;
 return ++$self->{AGE};
 }

Some might argue that one should go at these this way:

 sub exclaim {
 my $self = shift;
 return sprintf "Hi, I'm %s, age %d, working with %s",
 $self->name, $self->age, join(", ", $self->peers);
 }

 sub happy_birthday {
 my $self = shift;
 return $self->age($self->age() + 1);
 }

But since these methods are all executing in the class itself, this
 may not be critical. There are
tradeoffs to be made. Using direct
 hash access is faster (about an order of magnitude faster, in fact),
and
 it's more convenient when you want to interpolate in strings. But using
 methods (the external

Perl version 5.10.0 documentation - perltoot

Page 6http://perldoc.perl.org

interface) internally shields not just the users of
 your class but even you yourself from changes in your
data representation.

Class Data
What about "class data", data items common to each object in a class?
 What would you want that
for? Well, in your Person class, you might
 like to keep track of the total people alive. How do you
implement that?

You could make it a global variable called $Person::Census. But about
 only reason you'd do that
would be if you wanted people to be able to
 get at your class data directly. They could just say
$Person::Census
 and play around with it. Maybe this is ok in your design scheme.
 You might even
conceivably want to make it an exported variable. To be
 exportable, a variable must be a (package)
global. If this were a
 traditional module rather than an object-oriented one, you might do that.

While this approach is expected in most traditional modules, it's
 generally considered rather poor form
in most object modules. In an
 object module, you should set up a protective veil to separate interface

from implementation. So provide a class method to access class data
 just as you provide object
methods to access object data.

So, you could still keep $Census as a package global and rely upon
 others to honor the contract of
the module and therefore not play around
 with its implementation. You could even be supertricky and
make $Census a
 tied object as described in perltie, thereby intercepting all accesses.

But more often than not, you just want to make your class data a
 file-scoped lexical. To do so, simply
put this at the top of the file:

 my $Census = 0;

Even though the scope of a my() normally expires when the block in which
 it was declared is done (in
this case the whole file being required or
 used), Perl's deep binding of lexical variables guarantees
that the
 variable will not be deallocated, remaining accessible to functions
 declared within that scope.
This doesn't work with global variables
 given temporary values via local(), though.

Irrespective of whether you leave $Census a package global or make
 it instead a file-scoped lexical,
you should make these
 changes to your Person::new() constructor:

 sub new {
 my $class = shift;
 my $self = {};
 $Census++;
 $self->{NAME} = undef;
 $self->{AGE} = undef;
 $self->{PEERS} = [];
 bless ($self, $class);
 return $self;
 }

 sub population {
 return $Census;
 }

Now that we've done this, we certainly do need a destructor so that
 when Person is destroyed, the
$Census goes down. Here's how
 this could be done:

 sub DESTROY { --$Census }

Notice how there's no memory to deallocate in the destructor? That's
 something that Perl takes care

Perl version 5.10.0 documentation - perltoot

Page 7http://perldoc.perl.org

of for you all by itself.

Alternatively, you could use the Class::Data::Inheritable module from
 CPAN.

Accessing Class Data
It turns out that this is not really a good way to go about handling
 class data. A good scalable rule is
that you must never reference class
 data directly from an object method. Otherwise you aren't
building a
 scalable, inheritable class. The object must be the rendezvous point
 for all operations,
especially from an object method. The globals
 (class data) would in some sense be in the "wrong"
package in your
 derived classes. In Perl, methods execute in the context of the class
 they were
defined in, not that of the object that triggered them.
 Therefore, namespace visibility of package
globals in methods is unrelated
 to inheritance.

Got that? Maybe not. Ok, let's say that some other class "borrowed"
 (well, inherited) the DESTROY
method as it was defined above. When those
 objects are destroyed, the original $Census variable will
be altered,
 not the one in the new class's package namespace. Perhaps this is what
 you want, but
probably it isn't.

Here's how to fix this. We'll store a reference to the data in the
 value accessed by the hash key
"_CENSUS". Why the underscore? Well,
 mostly because an initial underscore already conveys strong
feelings
 of magicalness to a C programmer. It's really just a mnemonic device
 to remind ourselves
that this field is special and not to be used as
 a public data member in the same way that NAME,
AGE, and PEERS are.
 (Because we've been developing this code under the strict pragma, prior
 to
perl version 5.004 we'll have to quote the field name.)

 sub new {
 my $class = shift;
 my $self = {};
 $self->{NAME} = undef;
 $self->{AGE} = undef;
 $self->{PEERS} = [];
 # "private" data
 $self->{"_CENSUS"} = \$Census;
 bless ($self, $class);
 ++ ${ $self->{"_CENSUS"} };
 return $self;
 }

 sub population {
 my $self = shift;
 if (ref $self) {
 return ${ $self->{"_CENSUS"} };
 } else {
 return $Census;
 }
 }

 sub DESTROY {
 my $self = shift;
 -- ${ $self->{"_CENSUS"} };
 }

Debugging Methods
It's common for a class to have a debugging mechanism. For example,
 you might want to see when
objects are created or destroyed. To do that,
 add a debugging variable as a file-scoped lexical. For
this, we'll pull
 in the standard Carp module to emit our warnings and fatal messages.
 That way

Perl version 5.10.0 documentation - perltoot

Page 8http://perldoc.perl.org

messages will come out with the caller's filename and
 line number instead of our own; if we wanted
them to be from our own
 perspective, we'd just use die() and warn() directly instead of croak()
 and
carp() respectively.

 use Carp;
 my $Debugging = 0;

Now add a new class method to access the variable.

 sub debug {
 my $class = shift;
 if (ref $class) { confess "Class method called as object method" }
 unless (@_ == 1) { confess "usage: CLASSNAME->debug(level)" }
 $Debugging = shift;
 }

Now fix up DESTROY to murmur a bit as the moribund object expires:

 sub DESTROY {
 my $self = shift;
 if ($Debugging) { carp "Destroying $self " . $self->name }
 -- ${ $self->{"_CENSUS"} };
 }

One could conceivably make a per-object debug state. That
 way you could call both of these:

 Person->debug(1); # entire class
 $him->debug(1); # just this object

To do so, we need our debugging method to be a "bimodal" one, one that
 works on both classes and
objects. Therefore, adjust the debug()
 and DESTROY methods as follows:

 sub debug {
 my $self = shift;
 confess "usage: thing->debug(level)" unless @_ == 1;
 my $level = shift;
 if (ref($self)) {
 $self->{"_DEBUG"} = $level;		 # just myself
 } else {
 $Debugging = $level; # whole class
 }
 }

 sub DESTROY {
 my $self = shift;
 if ($Debugging || $self->{"_DEBUG"}) {
 carp "Destroying $self " . $self->name;
 }
 -- ${ $self->{"_CENSUS"} };
 }

What happens if a derived class (which we'll call Employee) inherits
 methods from this Person base
class? Then Employee->debug(), when called
 as a class method, manipulates
$Person::Debugging not $Employee::Debugging.

Perl version 5.10.0 documentation - perltoot

Page 9http://perldoc.perl.org

Class Destructors
The object destructor handles the death of each distinct object. But sometimes
 you want a bit of
cleanup when the entire class is shut down, which
 currently only happens when the program exits. To
make such a class destructor, create a function in that class's package named
 END. This works just
like the END function in traditional modules,
 meaning that it gets called whenever your program exits
unless it execs
 or dies of an uncaught signal. For example,

 sub END {
 if ($Debugging) {
 print "All persons are going away now.\n";
 }
 }

When the program exits, all the class destructors (END functions) are
 be called in the opposite order
that they were loaded in (LIFO order).

Documenting the Interface
And there you have it: we've just shown you the implementation of this
 Person class. Its interface
would be its documentation. Usually this
 means putting it in pod ("plain old documentation") format
right there
 in the same file. In our Person example, we would place the following
 docs anywhere in the
Person.pm file. Even though it looks mostly like
 code, it's not. It's embedded documentation such as
would be used by
 the pod2man, pod2html, or pod2text programs. The Perl compiler ignores
 pods
entirely, just as the translators ignore code. Here's an example of
 some pods describing the informal
interface:

 =head1 NAME

 Person - class to implement people

 =head1 SYNOPSIS

 use Person;

 #################
 # class methods #
 #################
 $ob = Person->new;
 $count = Person->population;

 #######################
 # object data methods #
 #######################

 ### get versions ###
 $who = $ob->name;
 $years = $ob->age;
 @pals = $ob->peers;

 ### set versions ###
 $ob->name("Jason");
 $ob->age(23);
 $ob->peers("Norbert", "Rhys", "Phineas");

Perl version 5.10.0 documentation - perltoot

Page 10http://perldoc.perl.org

 ########################
 # other object methods #
 ########################

 $phrase = $ob->exclaim;
 $ob->happy_birthday;

 =head1 DESCRIPTION

 The Person class implements dah dee dah dee dah....

That's all there is to the matter of interface versus implementation.
 A programmer who opens up the
module and plays around with all the private
 little shiny bits that were safely locked up behind the
interface contract
 has voided the warranty, and you shouldn't worry about their fate.

Aggregation
Suppose you later want to change the class to implement better names.
 Perhaps you'd like to support
both given names (called Christian names,
 irrespective of one's religion) and family names (called
surnames), plus
 nicknames and titles. If users of your Person class have been properly
 accessing it
through its documented interface, then you can easily change
 the underlying implementation. If they
haven't, then they lose and
 it's their fault for breaking the contract and voiding their warranty.

To do this, we'll make another class, this one called Fullname. What's
 the Fullname class look like?
To answer that question, you have to
 first figure out how you want to use it. How about we use it this
way:

 $him = Person->new();
 $him->fullname->title("St");
 $him->fullname->christian("Thomas");
 $him->fullname->surname("Aquinas");
 $him->fullname->nickname("Tommy");
 printf "His normal name is %s\n", $him->name;
 printf "But his real name is %s\n", $him->fullname->as_string;

Ok. To do this, we'll change Person::new() so that it supports
 a full name field this way:

 sub new {
 my $class = shift;
 my $self = {};
 $self->{FULLNAME} = Fullname->new();
 $self->{AGE} = undef;
 $self->{PEERS} = [];
 $self->{"_CENSUS"} = \$Census;
 bless ($self, $class);
 ++ ${ $self->{"_CENSUS"} };
 return $self;
 }

 sub fullname {
 my $self = shift;
 return $self->{FULLNAME};
 }

Then to support old code, define Person::name() this way:

Perl version 5.10.0 documentation - perltoot

Page 11http://perldoc.perl.org

 sub name {
 my $self = shift;
 return $self->{FULLNAME}->nickname(@_)
 || $self->{FULLNAME}->christian(@_);
 }

Here's the Fullname class. We'll use the same technique
 of using a hash reference to hold data fields,
and methods
 by the appropriate name to access them:

 package Fullname;
 use strict;

 sub new {
 my $class = shift;
 my $self = {
 TITLE => undef,
 CHRISTIAN => undef,
 SURNAME => undef,
 NICK => undef,
 };
 bless ($self, $class);
 return $self;
 }

 sub christian {
 my $self = shift;
 if (@_) { $self->{CHRISTIAN} = shift }
 return $self->{CHRISTIAN};
 }

 sub surname {
 my $self = shift;
 if (@_) { $self->{SURNAME} = shift }
 return $self->{SURNAME};
 }

 sub nickname {
 my $self = shift;
 if (@_) { $self->{NICK} = shift }
 return $self->{NICK};
 }

 sub title {
 my $self = shift;
 if (@_) { $self->{TITLE} = shift }
 return $self->{TITLE};
 }

 sub as_string {
 my $self = shift;
 my $name = join(" ", @$self{'CHRISTIAN', 'SURNAME'});
 if ($self->{TITLE}) {
 $name = $self->{TITLE} . " " . $name;
 }

Perl version 5.10.0 documentation - perltoot

Page 12http://perldoc.perl.org

 return $name;
 }

 1;

Finally, here's the test program:

 #!/usr/bin/perl -w
 use strict;
 use Person;
 sub END { show_census() }

 sub show_census () {
 printf "Current population: %d\n", Person->population;
 }

 Person->debug(1);

 show_census();

 my $him = Person->new();

 $him->fullname->christian("Thomas");
 $him->fullname->surname("Aquinas");
 $him->fullname->nickname("Tommy");
 $him->fullname->title("St");
 $him->age(1);

 printf "%s is really %s.\n", $him->name, $him->fullname->as_string;
 printf "%s's age: %d.\n", $him->name, $him->age;
 $him->happy_birthday;
 printf "%s's age: %d.\n", $him->name, $him->age;

 show_census();

Inheritance
Object-oriented programming systems all support some notion of
 inheritance. Inheritance means
allowing one class to piggy-back on
 top of another one so you don't have to write the same code
again and
 again. It's about software reuse, and therefore related to Laziness,
 the principal virtue of a
programmer. (The import/export mechanisms in
 traditional modules are also a form of code reuse, but
a simpler one than
 the true inheritance that you find in object modules.)

Sometimes the syntax of inheritance is built into the core of the
 language, and sometimes it's not. Perl
has no special syntax for
 specifying the class (or classes) to inherit from. Instead, it's all
 strictly in the
semantics. Each package can have a variable called @ISA,
 which governs (method) inheritance. If
you try to call a method on an
 object or class, and that method is not found in that object's package,

Perl then looks to @ISA for other packages to go looking through in
 search of the missing method.

Like the special per-package variables recognized by Exporter (such as
 @EXPORT, @EXPORT_OK,
@EXPORT_FAIL, %EXPORT_TAGS, and $VERSION), the @ISA
 array must be a package-scoped
global and not a file-scoped lexical
 created via my(). Most classes have just one item in their @ISA
array.
 In this case, we have what's called "single inheritance", or SI for short.

Consider this class:

Perl version 5.10.0 documentation - perltoot

Page 13http://perldoc.perl.org

 package Employee;
 use Person;
 @ISA = ("Person");
 1;

Not a lot to it, eh? All it's doing so far is loading in another
 class and stating that this one will inherit
methods from that
 other class if need be. We have given it none of its own methods.
 We rely upon an
Employee to behave just like a Person.

Setting up an empty class like this is called the "empty subclass test";
 that is, making a derived class
that does nothing but inherit from a
 base class. If the original base class has been designed properly,

then the new derived class can be used as a drop-in replacement for the
 old one. This means you
should be able to write a program like this:

 use Employee;
 my $empl = Employee->new();
 $empl->name("Jason");
 $empl->age(23);
 printf "%s is age %d.\n", $empl->name, $empl->age;

By proper design, we mean always using the two-argument form of bless(),
 avoiding direct access of
global data, and not exporting anything. If you
 look back at the Person::new() function we defined
above, we were careful
 to do that. There's a bit of package data used in the constructor,
 but the
reference to this is stored on the object itself and all other
 methods access package data via that
reference, so we should be ok.

What do we mean by the Person::new() function -- isn't that actually
 a method? Well, in principle, yes.
A method is just a function that
 expects as its first argument a class name (package) or object

(blessed reference). Person::new() is the function that both the Person->new() method and the
Employee->new() method end
 up calling. Understand that while a method call looks a lot like a

function call, they aren't really quite the same, and if you treat them
 as the same, you'll very soon be
left with nothing but broken programs.
 First, the actual underlying calling conventions are different:
method
 calls get an extra argument. Second, function calls don't do inheritance,
 but methods do.

 Method Call Resulting Function Call
 ----------- ------------------------
 Person->new() Person::new("Person")
 Employee->new() Person::new("Employee")

So don't use function calls when you mean to call a method.

If an employee is just a Person, that's not all too very interesting.
 So let's add some other methods.
We'll give our employee
 data fields to access their salary, their employee ID, and their
 start date.

If you're getting a little tired of creating all these nearly identical
 methods just to get at the object's
data, do not despair. Later,
 we'll describe several different convenience mechanisms for shortening

this up. Meanwhile, here's the straight-forward way:

 sub salary {
 my $self = shift;
 if (@_) { $self->{SALARY} = shift }
 return $self->{SALARY};
 }

 sub id_number {
 my $self = shift;
 if (@_) { $self->{ID} = shift }

Perl version 5.10.0 documentation - perltoot

Page 14http://perldoc.perl.org

 return $self->{ID};
 }

 sub start_date {
 my $self = shift;
 if (@_) { $self->{START_DATE} = shift }
 return $self->{START_DATE};
 }

Overridden Methods
What happens when both a derived class and its base class have the same
 method defined? Well,
then you get the derived class's version of that
 method. For example, let's say that we want the
peers() method called on
 an employee to act a bit differently. Instead of just returning the list
 of peer
names, let's return slightly different strings. So doing this:

 $empl->peers("Peter", "Paul", "Mary");
 printf "His peers are: %s\n", join(", ", $empl->peers);

will produce:

 His peers are: PEON=PETER, PEON=PAUL, PEON=MARY

To do this, merely add this definition into the Employee.pm file:

 sub peers {
 my $self = shift;
 if (@_) { @{ $self->{PEERS} } = @_ }
 return map { "PEON=\U$_" } @{ $self->{PEERS} };
 }

There, we've just demonstrated the high-falutin' concept known in certain
 circles as polymorphism.
We've taken on the form and behaviour of
 an existing object, and then we've altered it to suit our own
purposes.
 This is a form of Laziness. (Getting polymorphed is also what happens
 when the wizard
decides you'd look better as a frog.)

Every now and then you'll want to have a method call trigger both its
 derived class (also known as
"subclass") version as well as its base class
 (also known as "superclass") version. In practice,
constructors and
 destructors are likely to want to do this, and it probably also makes
 sense in the
debug() method we showed previously.

To do this, add this to Employee.pm:

 use Carp;
 my $Debugging = 0;

 sub debug {
 my $self = shift;
 confess "usage: thing->debug(level)" unless @_ == 1;
 my $level = shift;
 if (ref($self)) {
 $self->{"_DEBUG"} = $level;
 } else {
 $Debugging = $level; # whole class
 }
 Person::debug($self, $Debugging); # don't really do this
 }

Perl version 5.10.0 documentation - perltoot

Page 15http://perldoc.perl.org

As you see, we turn around and call the Person package's debug() function.
 But this is far too fragile
for good design. What if Person doesn't
 have a debug() function, but is inheriting its debug() method

from elsewhere? It would have been slightly better to say

 Person->debug($Debugging);

But even that's got too much hard-coded. It's somewhat better to say

 $self->Person::debug($Debugging);

Which is a funny way to say to start looking for a debug() method up
 in Person. This strategy is more
often seen on overridden object methods
 than on overridden class methods.

There is still something a bit off here. We've hard-coded our
 superclass's name. This in particular is
bad if you change which classes
 you inherit from, or add others. Fortunately, the pseudoclass SUPER
comes to the rescue here.

 $self->SUPER::debug($Debugging);

This way it starts looking in my class's @ISA. This only makes sense
 from within a method call,
though. Don't try to access anything
 in SUPER:: from anywhere else, because it doesn't exist outside

an overridden method call. Note that SUPER refers to the superclass of
 the current package, not to the
superclass of $self.

Things are getting a bit complicated here. Have we done anything
 we shouldn't? As before, one way
to test whether we're designing
 a decent class is via the empty subclass test. Since we already have

an Employee class that we're trying to check, we'd better get a new
 empty subclass that can derive
from Employee. Here's one:

 package Boss;
 use Employee; # :-)
 @ISA = qw(Employee);

And here's the test program:

 #!/usr/bin/perl -w
 use strict;
 use Boss;
 Boss->debug(1);

 my $boss = Boss->new();

 $boss->fullname->title("Don");
 $boss->fullname->surname("Pichon Alvarez");
 $boss->fullname->christian("Federico Jesus");
 $boss->fullname->nickname("Fred");

 $boss->age(47);
 $boss->peers("Frank", "Felipe", "Faust");

 printf "%s is age %d.\n", $boss->fullname->as_string, $boss->age;
 printf "His peers are: %s\n", join(", ", $boss->peers);

Running it, we see that we're still ok. If you'd like to dump out your
 object in a nice format, somewhat
like the way the 'x' command works in
 the debugger, you could use the Data::Dumper module from

Perl version 5.10.0 documentation - perltoot

Page 16http://perldoc.perl.org

CPAN this way:

 use Data::Dumper;
 print "Here's the boss:\n";
 print Dumper($boss);

Which shows us something like this:

 Here's the boss:
 $VAR1 = bless({
	 _CENSUS => \1,
	 FULLNAME => bless({
			 TITLE => 'Don',
			 SURNAME => 'Pichon Alvarez',
			 NICK => 'Fred',
			 CHRISTIAN => 'Federico Jesus'
			 }, 'Fullname'),
	 AGE => 47,
	 PEERS => [
		 'Frank',
		 'Felipe',
		 'Faust'
]
 }, 'Boss');

Hm.... something's missing there. What about the salary, start date,
 and ID fields? Well, we never set
them to anything, even undef, so they
 don't show up in the hash's keys. The Employee class has no
new() method
 of its own, and the new() method in Person doesn't know about Employees.
 (Nor
should it: proper OO design dictates that a subclass be allowed to
 know about its immediate
superclass, but never vice-versa.) So let's
 fix up Employee::new() this way:

 sub new {
 my $class = shift;
 my $self = $class->SUPER::new();
 $self->{SALARY} = undef;
 $self->{ID} = undef;
 $self->{START_DATE} = undef;
 bless ($self, $class); # reconsecrate
 return $self;
 }

Now if you dump out an Employee or Boss object, you'll find
 that new fields show up there now.

Multiple Inheritance
Ok, at the risk of confusing beginners and annoying OO gurus, it's
 time to confess that Perl's object
system includes that controversial
 notion known as multiple inheritance, or MI for short. All this means
is that rather than having just one parent class who in turn might
 itself have a parent class, etc., that
you can directly inherit from
 two or more parents. It's true that some uses of MI can get you into

trouble, although hopefully not quite so much trouble with Perl as with
 dubiously-OO languages like
C++.

The way it works is actually pretty simple: just put more than one package
 name in your @ISA array.
When it comes time for Perl to go finding
 methods for your object, it looks at each of these packages
in order.
 Well, kinda. It's actually a fully recursive, depth-first order by
 default (see mro for alternate
method resolution orders).
 Consider a bunch of @ISA arrays like this:

 @First::ISA = qw(Alpha);

Perl version 5.10.0 documentation - perltoot

Page 17http://perldoc.perl.org

 @Second::ISA = qw(Beta);
 @Third::ISA = qw(First Second);

If you have an object of class Third:

 my $ob = Third->new();
 $ob->spin();

How do we find a spin() method (or a new() method for that matter)?
 Because the search is
depth-first, classes will be looked up
 in the following order: Third, First, Alpha, Second, and Beta.

In practice, few class modules have been seen that actually
 make use of MI. One nearly always
chooses simple containership of
 one class within another over MI. That's why our Person
 object
contained a Fullname object. That doesn't mean
 it was one.

However, there is one particular area where MI in Perl is rampant:
 borrowing another class's class
methods. This is rather common,
 especially with some bundled "objectless" classes,
 like Exporter,
DynaLoader, AutoLoader, and SelfLoader. These classes
 do not provide constructors; they exist only
so you may inherit their
 class methods. (It's not entirely clear why inheritance was done
 here rather
than traditional module importation.)

For example, here is the POSIX module's @ISA:

 package POSIX;
 @ISA = qw(Exporter DynaLoader);

The POSIX module isn't really an object module, but then,
 neither are Exporter or DynaLoader.
They're just lending their
 classes' behaviours to POSIX.

Why don't people use MI for object methods much? One reason is that
 it can have complicated
side-effects. For one thing, your inheritance
 graph (no longer a tree) might converge back to the same
base class.
 Although Perl guards against recursive inheritance, merely having parents
 who are
related to each other via a common ancestor, incestuous though
 it sounds, is not forbidden. What if in
our Third class shown above we
 wanted its new() method to also call both overridden constructors in
its
 two parent classes? The SUPER notation would only find the first one.
 Also, what about if the
Alpha and Beta classes both had a common ancestor,
 like Nought? If you kept climbing up the
inheritance tree calling
 overridden methods, you'd end up calling Nought::new() twice,
 which might
well be a bad idea.

UNIVERSAL: The Root of All Objects
Wouldn't it be convenient if all objects were rooted at some ultimate
 base class? That way you could
give every object common methods without
 having to go and add it to each and every @ISA. Well, it
turns out that
 you can. You don't see it, but Perl tacitly and irrevocably assumes
 that there's an extra
element at the end of @ISA: the class UNIVERSAL.
 In version 5.003, there were no predefined
methods there, but you could put
 whatever you felt like into it.

However, as of version 5.004 (or some subversive releases, like 5.003_08),
 UNIVERSAL has some
methods in it already. These are builtin to your Perl
 binary, so they don't take any extra time to load.
Predefined methods
 include isa(), can(), and VERSION(). isa() tells you whether an object or
 class
"is" another one without having to traverse the hierarchy yourself:

 $has_io = $fd->isa("IO::Handle");
 $itza_handle = IO::Socket->isa("IO::Handle");

The can() method, called against that object or class, reports back
 whether its string argument is a
callable method name in that class.
 In fact, it gives you back a function reference to that method:

 $his_print_method = $obj->can('as_string');

Perl version 5.10.0 documentation - perltoot

Page 18http://perldoc.perl.org

Finally, the VERSION method checks whether the class (or the object's
 class) has a package global
called $VERSION that's high enough, as in:

 Some_Module->VERSION(3.0);
 $his_vers = $ob->VERSION();

However, we don't usually call VERSION ourselves. (Remember that an all
 uppercase function name
is a Perl convention that indicates that the
 function will be automatically used by Perl in some way.) In
this case,
 it happens when you say

 use Some_Module 3.0;

If you wanted to add version checking to your Person class explained
 above, just add this to
Person.pm:

 our $VERSION = '1.1';

and then in Employee.pm you can say

 use Person 1.1;

And it would make sure that you have at least that version number or
 higher available. This is not the
same as loading in that exact version
 number. No mechanism currently exists for concurrent
installation of
 multiple versions of a module. Lamentably.

Deeper UNIVERSAL details
It is also valid (though perhaps unwise in most cases) to put other
 packages' names in
@UNIVERSAL::ISA. These packages will also be
 implicitly inherited by all classes, just as
UNIVERSAL itself is.
 However, neither UNIVERSAL nor any of its parents from the @ISA tree
 are
explicit base classes of all objects. To clarify, given the
 following:

 @UNIVERSAL::ISA = ('REALLYUNIVERSAL');

 package REALLYUNIVERSAL;
 sub special_method { return "123" }

 package Foo;
 sub normal_method { return "321" }

Calling Foo->special_method() will return "123", but calling
 Foo->isa('REALLYUNIVERSAL') or
Foo->isa('UNIVERSAL') will return
 false.

If your class is using an alternate mro like C3 (see mro), method resolution within UNIVERSAL /
@UNIVERSAL::ISA will
 still occur in the default depth-first left-to-right manner,
 after the class's C3
mro is exhausted.

All of the above is made more intuitive by realizing what really
 happens during method lookup, which
is roughly like this
 ugly pseudo-code:

 get_mro(class) {
 # recurses down the @ISA's starting at class,
 # builds a single linear array of all
 # classes to search in the appropriate order.
 # The method resolution order (mro) to use
 # for the ordering is whichever mro "class"
 # has set on it (either default (depth first

Perl version 5.10.0 documentation - perltoot

Page 19http://perldoc.perl.org

 # l-to-r) or C3 ordering).
 # The first entry in the list is the class
 # itself.
 }

 find_method(class, methname) {
 foreach $class (get_mro(class)) {
 if($class->has_method(methname)) {
 return ref_to($class->$methname);
 }
 }
 foreach $class (get_mro(UNIVERSAL)) {
 if($class->has_method(methname)) {
 return ref_to($class->$methname);
 }
 }
 return undef;
 }

However the code that implements UNIVERSAL::isa does not
 search in UNIVERSAL itself, only in the
package's actual
 @ISA.

Alternate Object Representations
Nothing requires objects to be implemented as hash references. An object
 can be any sort of
reference so long as its referent has been suitably
 blessed. That means scalar, array, and code
references are also fair
 game.

A scalar would work if the object has only one datum to hold. An array
 would work for most cases, but
makes inheritance a bit dodgy because
 you have to invent new indices for the derived classes.

Arrays as Objects
If the user of your class honors the contract and sticks to the advertised
 interface, then you can
change its underlying interface if you feel
 like it. Here's another implementation that conforms to the
same
 interface specification. This time we'll use an array reference
 instead of a hash reference to
represent the object.

 package Person;
 use strict;

 my($NAME, $AGE, $PEERS) = (0 .. 2);

 ##
 ## the object constructor (array version) ##
 ##
 sub new {
 my $self = [];
 $self->[$NAME] = undef; # this is unnecessary
 $self->[$AGE] = undef; # as is this
 $self->[$PEERS] = []; # but this isn't, really
 bless($self);
 return $self;
 }

 sub name {
 my $self = shift;

Perl version 5.10.0 documentation - perltoot

Page 20http://perldoc.perl.org

 if (@_) { $self->[$NAME] = shift }
 return $self->[$NAME];
 }

 sub age {
 my $self = shift;
 if (@_) { $self->[$AGE] = shift }
 return $self->[$AGE];
 }

 sub peers {
 my $self = shift;
 if (@_) { @{ $self->[$PEERS] } = @_ }
 return @{ $self->[$PEERS] };
 }

 1; # so the require or use succeeds

You might guess that the array access would be a lot faster than the
 hash access, but they're actually
comparable. The array is a little
 bit faster, but not more than ten or fifteen percent, even when you

replace the variables above like $AGE with literal numbers, like 1.
 A bigger difference between the
two approaches can be found in memory use.
 A hash representation takes up more memory than an
array representation
 because you have to allocate memory for the keys as well as for the values.

However, it really isn't that bad, especially since as of version 5.004,
 memory is only allocated once
for a given hash key, no matter how many
 hashes have that key. It's expected that sometime in the
future, even
 these differences will fade into obscurity as more efficient underlying
 representations are
devised.

Still, the tiny edge in speed (and somewhat larger one in memory)
 is enough to make some
programmers choose an array representation
 for simple classes. There's still a little problem with

scalability, though, because later in life when you feel
 like creating subclasses, you'll find that hashes
just work
 out better.

Closures as Objects
Using a code reference to represent an object offers some fascinating
 possibilities. We can create a
new anonymous function (closure) who
 alone in all the world can see the object's data. This is
because we
 put the data into an anonymous hash that's lexically visible only to
 the closure we create,
bless, and return as the object. This object's
 methods turn around and call the closure as a regular
subroutine call,
 passing it the field we want to affect. (Yes,
 the double-function call is slow, but if you
wanted fast, you wouldn't
 be using objects at all, eh? :-)

Use would be similar to before:

 use Person;
 $him = Person->new();
 $him->name("Jason");
 $him->age(23);
 $him->peers(["Norbert", "Rhys", "Phineas"]);
 printf "%s is %d years old.\n", $him->name, $him->age;
 print "His peers are: ", join(", ", @{$him->peers}), "\n";

but the implementation would be radically, perhaps even sublimely
 different:

 package Person;

Perl version 5.10.0 documentation - perltoot

Page 21http://perldoc.perl.org

 sub new {
	 my $class = shift;
	 my $self = {
	 NAME => undef,
	 AGE => undef,
	 PEERS => [],
	 };
	 my $closure = sub {
	 my $field = shift;
	 if (@_) { $self->{$field} = shift }
	 return $self->{$field};
	 };
	 bless($closure, $class);
	 return $closure;
 }

 sub name { &{ $_[0] }("NAME", @_[1 .. $#_]) }
 sub age { &{ $_[0] }("AGE", @_[1 .. $#_]) }
 sub peers { &{ $_[0] }("PEERS", @_[1 .. $#_]) }

 1;

Because this object is hidden behind a code reference, it's probably a bit
 mysterious to those whose
background is more firmly rooted in standard
 procedural or object-based programming languages
than in functional
 programming languages whence closures derive. The object
 created and returned
by the new() method is itself not a data reference
 as we've seen before. It's an anonymous code
reference that has within
 it access to a specific version (lexical binding and instantiation)
 of the
object's data, which are stored in the private variable $self.
 Although this is the same function each
time, it contains a different
 version of $self.

When a method like $him->name("Jason") is called, its implicit
 zeroth argument is the invoking
object--just as it is with all method
 calls. But in this case, it's our code reference (something like a

function pointer in C++, but with deep binding of lexical variables).
 There's not a lot to be done with a
code reference beyond calling it, so
 that's just what we do when we say &{$_[0]}. This is just a
regular
 function call, not a method call. The initial argument is the string
 "NAME", and any remaining
arguments are whatever had been passed to the
 method itself.

Once we're executing inside the closure that had been created in new(),
 the $self hash reference
suddenly becomes visible. The closure grabs
 its first argument ("NAME" in this case because that's
what the name()
 method passed it), and uses that string to subscript into the private
 hash hidden in its
unique version of $self.

Nothing under the sun will allow anyone outside the executing method to
 be able to get at this hidden
data. Well, nearly nothing. You could
 single step through the program using the debugger and find out
the
 pieces while you're in the method, but everyone else is out of luck.

There, if that doesn't excite the Scheme folks, then I just don't know
 what will. Translation of this
technique into C++, Java, or any other
 braindead-static language is left as a futile exercise for
aficionados
 of those camps.

You could even add a bit of nosiness via the caller() function and
 make the closure refuse to operate
unless called via its own package.
 This would no doubt satisfy certain fastidious concerns of
programming
 police and related puritans.

If you were wondering when Hubris, the third principle virtue of a
 programmer, would come into play,
here you have it. (More seriously,
 Hubris is just the pride in craftsmanship that comes from having
written
 a sound bit of well-designed code.)

Perl version 5.10.0 documentation - perltoot

Page 22http://perldoc.perl.org

AUTOLOAD: Proxy Methods
Autoloading is a way to intercept calls to undefined methods. An autoload
 routine may choose to
create a new function on the fly, either loaded
 from disk or perhaps just eval()ed right there. This
define-on-the-fly
 strategy is why it's called autoloading.

But that's only one possible approach. Another one is to just
 have the autoloaded method itself
directly provide the
 requested service. When used in this way, you may think
 of autoloaded methods
as "proxy" methods.

When Perl tries to call an undefined function in a particular package
 and that function is not defined, it
looks for a function in
 that same package called AUTOLOAD. If one exists, it's called
 with the same
arguments as the original function would have had.
 The fully-qualified name of the function is stored
in that package's
 global variable $AUTOLOAD. Once called, the function can do anything
 it would
like, including defining a new function by the right name, and
 then doing a really fancy kind of goto
right to it, erasing itself
 from the call stack.

What does this have to do with objects? After all, we keep talking about
 functions, not methods. Well,
since a method is just a function with
 an extra argument and some fancier semantics about where it's
found,
 we can use autoloading for methods, too. Perl doesn't start looking
 for an AUTOLOAD method
until it has exhausted the recursive hunt up
 through @ISA, though. Some programmers have even
been known to define
 a UNIVERSAL::AUTOLOAD method to trap unresolved method calls to any

kind of object.

Autoloaded Data Methods
You probably began to get a little suspicious about the duplicated
 code way back earlier when we first
showed you the Person class, and
 then later the Employee class. Each method used to access the

hash fields looked virtually identical. This should have tickled
 that great programming virtue,
Impatience, but for the time,
 we let Laziness win out, and so did nothing. Proxy methods can cure

this.

Instead of writing a new function every time we want a new data field,
 we'll use the autoload
mechanism to generate (actually, mimic) methods on
 the fly. To verify that we're accessing a valid
member, we will check
 against an _permitted (pronounced "under-permitted") field, which
 is a
reference to a file-scoped lexical (like a C file static) hash of permitted fields in this record
 called
%fields. Why the underscore? For the same reason as the _CENSUS
 field we once used: as a
marker that means "for internal use only".

Here's what the module initialization code and class
 constructor will look like when taking this
approach:

 package Person;
 use Carp;
 our $AUTOLOAD; # it's a package global

 my %fields = (
	 name => undef,
	 age => undef,
	 peers => undef,
);

 sub new {
	 my $class = shift;
	 my $self = {
	 _permitted => \%fields,
	 %fields,
	 };
	 bless $self, $class;

Perl version 5.10.0 documentation - perltoot

Page 23http://perldoc.perl.org

	 return $self;
 }

If we wanted our record to have default values, we could fill those in
 where current we have undef in
the %fields hash.

Notice how we saved a reference to our class data on the object itself?
 Remember that it's important
to access class data through the object
 itself instead of having any method reference %fields directly,
or else
 you won't have a decent inheritance.

The real magic, though, is going to reside in our proxy method, which
 will handle all calls to undefined
methods for objects of class Person
 (or subclasses of Person). It has to be called AUTOLOAD. Again,
it's
 all caps because it's called for us implicitly by Perl itself, not by
 a user directly.

 sub AUTOLOAD {
	 my $self = shift;
	 my $type = ref($self)
		 or croak "$self is not an object";

	 my $name = $AUTOLOAD;
	 $name =~ s/.*://; # strip fully-qualified portion

	 unless (exists $self->{_permitted}->{$name}) {
	 croak "Can't access `$name' field in class $type";
	 }

	 if (@_) {
	 return $self->{$name} = shift;
	 } else {
	 return $self->{$name};
	 }
 }

Pretty nifty, eh? All we have to do to add new data fields
 is modify %fields. No new functions need be
written.

I could have avoided the _permitted field entirely, but I
 wanted to demonstrate how to store a
reference to class data on the
 object so you wouldn't have to access that class data
 directly from an
object method.

Inherited Autoloaded Data Methods
But what about inheritance? Can we define our Employee
 class similarly? Yes, so long as we're
careful enough.

Here's how to be careful:

 package Employee;
 use Person;
 use strict;
 our @ISA = qw(Person);

 my %fields = (
	 id => undef,
	 salary => undef,
);

Perl version 5.10.0 documentation - perltoot

Page 24http://perldoc.perl.org

 sub new {
	 my $class = shift;
	 my $self = $class->SUPER::new();
	 my($element);
	 foreach $element (keys %fields) {
	 $self->{_permitted}->{$element} = $fields{$element};
	 }
	 @{$self}{keys %fields} = values %fields;
	 return $self;
 }

Once we've done this, we don't even need to have an
 AUTOLOAD function in the Employee package,
because
 we'll grab Person's version of that via inheritance,
 and it will all work out just fine.

Metaclassical Tools
Even though proxy methods can provide a more convenient approach to making
 more struct-like
classes than tediously coding up data methods as
 functions, it still leaves a bit to be desired. For one
thing, it means
 you have to handle bogus calls that you don't mean to trap via your proxy.
 It also
means you have to be quite careful when dealing with inheritance,
 as detailed above.

Perl programmers have responded to this by creating several different
 class construction classes.
These metaclasses are classes
 that create other classes. A couple worth looking at are
 Class::Struct
and Alias. These and other related metaclasses can be
 found in the modules directory on CPAN.

Class::Struct
One of the older ones is Class::Struct. In fact, its syntax and
 interface were sketched out long before
perl5 even solidified into a
 real thing. What it does is provide you a way to "declare" a class
 as having
objects whose fields are of a specific type. The function
 that does this is called, not surprisingly
enough, struct(). Because
 structures or records are not base types in Perl, each time you want to

create a class to provide a record-like data object, you yourself have
 to define a new() method, plus
separate data-access methods for each of
 that record's fields. You'll quickly become bored with this
process.
 The Class::Struct::struct() function alleviates this tedium.

Here's a simple example of using it:

 use Class::Struct qw(struct);
 use Jobbie; # user-defined; see below

 struct 'Fred' => {
 one => '$',
 many => '@',
 profession => 'Jobbie', # does not call Jobbie->new()
 };

 $ob = Fred->new(profession => Jobbie->new());
 $ob->one("hmmmm");

 $ob->many(0, "here");
 $ob->many(1, "you");
 $ob->many(2, "go");
 print "Just set: ", $ob->many(2), "\n";

 $ob->profession->salary(10_000);

You can declare types in the struct to be basic Perl types, or
 user-defined types (classes). User types

Perl version 5.10.0 documentation - perltoot

Page 25http://perldoc.perl.org

will be initialized by calling
 that class's new() method.

Take care that the Jobbie object is not created automatically by the Fred class's new() method, so
you should specify a Jobbie object
 when you create an instance of Fred.

Here's a real-world example of using struct generation. Let's say you
 wanted to override Perl's idea of
gethostbyname() and gethostbyaddr() so
 that they would return objects that acted like C structures.
We don't
 care about high-falutin' OO gunk. All we want is for these objects to
 act like structs in the C
sense.

 use Socket;
 use Net::hostent;
 $h = gethostbyname("perl.com"); # object return
 printf "perl.com's real name is %s, address %s\n",
	 $h->name, inet_ntoa($h->addr);

Here's how to do this using the Class::Struct module.
 The crux is going to be this call:

 struct 'Net::hostent' => [# note bracket
	 name => '$',
	 aliases => '@',
	 addrtype => '$',
	 'length' => '$',
	 addr_list => '@',
];

Which creates object methods of those names and types.
 It even creates a new() method for us.

We could also have implemented our object this way:

 struct 'Net::hostent' => { 	 # note brace
	 name => '$',
	 aliases => '@',
	 addrtype => '$',
	 'length' => '$',
	 addr_list => '@',
 };

and then Class::Struct would have used an anonymous hash as the object
 type, instead of an
anonymous array. The array is faster and smaller,
 but the hash works out better if you eventually want
to do inheritance.
 Since for this struct-like object we aren't planning on inheritance,
 this time we'll opt
for better speed and size over better flexibility.

Here's the whole implementation:

 package Net::hostent;
 use strict;

 BEGIN {
	 use Exporter ();
	 our @EXPORT = qw(gethostbyname gethostbyaddr gethost);
	 our @EXPORT_OK = qw(
			 $h_name @h_aliases
			 $h_addrtype $h_length
			 @h_addr_list $h_addr
);
	 our %EXPORT_TAGS = (FIELDS => [@EXPORT_OK, @EXPORT]);

Perl version 5.10.0 documentation - perltoot

Page 26http://perldoc.perl.org

 }
 our @EXPORT_OK;

 # Class::Struct forbids use of @ISA
 sub import { goto &Exporter::import }

 use Class::Struct qw(struct);
 struct 'Net::hostent' => [
 name => '$',
 aliases => '@',
 addrtype => '$',
 'length' => '$',
 addr_list => '@',
];

 sub addr { shift->addr_list->[0] }

 sub populate (@) {
	 return unless @_;
	 my $hob = new(); # Class::Struct made this!
	 $h_name = $hob->[0] = $_[0];
	 @h_aliases = @{ $hob->[1] } = split ' ', $_[1];
	 $h_addrtype = $hob->[2] = $_[2];
	 $h_length = $hob->[3] = $_[3];
	 $h_addr = $_[4];
	 @h_addr_list = @{ $hob->[4] } = @_[(4 .. $#_)];
	 return $hob;
 }

 sub gethostbyname ($) { populate(CORE::gethostbyname(shift)) }

 sub gethostbyaddr ($;$) {
	 my ($addr, $addrtype);
	 $addr = shift;
	 require Socket unless @_;
	 $addrtype = @_ ? shift : Socket::AF_INET();
	 populate(CORE::gethostbyaddr($addr, $addrtype))
 }

 sub gethost($) {
	 if ($_[0] =~ /^\d+(?:\.\d+(?:\.\d+(?:\.\d+)?)?)?$/) {
	 require Socket;
	 &gethostbyaddr(Socket::inet_aton(shift));
	 } else {
	 &gethostbyname;
	 }
 }

 1;

We've snuck in quite a fair bit of other concepts besides just dynamic
 class creation, like overriding
core functions, import/export bits,
 function prototyping, short-cut function call via &whatever, and

function replacement with goto &whatever. These all mostly make
 sense from the perspective of a

Perl version 5.10.0 documentation - perltoot

Page 27http://perldoc.perl.org

traditional module, but as you can see,
 we can also use them in an object module.

You can look at other object-based, struct-like overrides of core
 functions in the 5.004 release of Perl
in File::stat, Net::hostent,
 Net::netent, Net::protoent, Net::servent, Time::gmtime, Time::localtime,

User::grent, and User::pwent. These modules have a final component
 that's all lowercase, by
convention reserved for compiler pragmas,
 because they affect the compilation and change a builtin
function.
 They also have the type names that a C programmer would most expect.

Data Members as Variables
If you're used to C++ objects, then you're accustomed to being able to
 get at an object's data
members as simple variables from within a method.
 The Alias module provides for this, as well as a
good bit more, such
 as the possibility of private methods that the object can call but folks
 outside the
class cannot.

Here's an example of creating a Person using the Alias module.
 When you update these magical
instance variables, you automatically
 update value fields in the hash. Convenient, eh?

 package Person;

 # this is the same as before...
 sub new {
	 my $class = shift;
	 my $self = {
	 NAME => undef,
	 AGE => undef,
	 PEERS => [],
	 };
	 bless($self, $class);
	 return $self;
 }

 use Alias qw(attr);
 our ($NAME, $AGE, $PEERS);

 sub name {
	 my $self = attr shift;
	 if (@_) { $NAME = shift; }
	 return $NAME;
 }

 sub age {
	 my $self = attr shift;
	 if (@_) { $AGE = shift; }
	 return $AGE;
 }

 sub peers {
	 my $self = attr shift;
	 if (@_) { @PEERS = @_; }
	 return @PEERS;
 }

 sub exclaim {
 my $self = attr shift;
 return sprintf "Hi, I'm %s, age %d, working with %s",

Perl version 5.10.0 documentation - perltoot

Page 28http://perldoc.perl.org

 $NAME, $AGE, join(", ", @PEERS);
 }

 sub happy_birthday {
 my $self = attr shift;
 return ++$AGE;
 }

The need for the our declaration is because what Alias does
 is play with package globals with the
same name as the fields. To use
 globals while use strict is in effect, you have to predeclare them.
These package variables are localized to the block enclosing the attr()
 call just as if you'd used a
local() on them. However, that means that
 they're still considered global variables with temporary
values, just
 as with any other local().

It would be nice to combine Alias with
 something like Class::Struct or Class::MethodMaker.

NOTES
Object Terminology

In the various OO literature, it seems that a lot of different words
 are used to describe only a few
different concepts. If you're not
 already an object programmer, then you don't need to worry about all

these fancy words. But if you are, then you might like to know how to
 get at the same concepts in
Perl.

For example, it's common to call an object an instance of a class
 and to call those objects' methods
instance methods. Data fields
 peculiar to each object are often called instance data or object

attributes, and data fields common to all members of that class are class data, class attributes, or
static data members.

Also, base class, generic class, and superclass all describe
 the same notion, whereas derived class,
specific class, and subclass describe the other related one.

C++ programmers have static methods and virtual methods,
 but Perl only has class methods and
object methods.
 Actually, Perl only has methods. Whether a method gets used
 as a class or object
method is by usage only. You could accidentally
 call a class method (one expecting a string
argument) on an
 object (one expecting a reference), or vice versa.

From the C++ perspective, all methods in Perl are virtual.
 This, by the way, is why they are never
checked for function
 prototypes in the argument list as regular builtin and user-defined
 functions can
be.

Because a class is itself something of an object, Perl's classes can be
 taken as describing both a
"class as meta-object" (also called object
 factory) philosophy and the "class as type definition" (
declaring
 behaviour, not defining mechanism) idea. C++ supports the latter
 notion, but not the former.

SEE ALSO
The following manpages will doubtless provide more
 background for this one: perlmod, perlref, perlobj
, perlbot, perltie,
 and overload.

perlboot is a kinder, gentler introduction to object-oriented
 programming.

perltooc provides more detail on class data.

Some modules which might prove interesting are Class::Accessor,
 Class::Class, Class::Contract,
Class::Data::Inheritable,
 Class::MethodMaker and Tie::SecureHash

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen All rights reserved.

Perl version 5.10.0 documentation - perltoot

Page 29http://perldoc.perl.org

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file
 are hereby placed into the public domain.
You are permitted and
 encouraged to use this code in your own programs for fun
 or for profit as you
see fit. A simple comment in the code giving
 credit would be courteous but is not required.

COPYRIGHT
Acknowledgments

Thanks to
 Larry Wall,
 Roderick Schertler,
 Gurusamy Sarathy,
 Dean Roehrich,
 Raphael Manfredi,

Brent Halsey,
 Greg Bacon,
 Brad Appleton,
 and many others for their helpful comments.

