
Perl version 5.10.0 documentation - perltodo

Page 1http://perldoc.perl.org

NAME
perltodo - Perl TO-DO List

DESCRIPTION
This is a list of wishes for Perl. The tasks we think are smaller or easier
 are listed first. Anyone is
welcome to work on any of these, but it's a good
 idea to first contact perl5-porters@perl.org to avoid
duplication of
 effort. By all means contact a pumpking privately first if you prefer.

Whilst patches to make the list shorter are most welcome, ideas to add to
 the list are also
encouraged. Check the perl5-porters archives for past
 ideas, and any discussion about them. One set
of archives may be found at:

 http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/

What can we offer you in return? Fame, fortune, and everlasting glory? Maybe
 not, but if your patch is
incorporated, then we'll add your name to the AUTHORS file, which ships in the official distribution.
How many other
 programming languages offer you 1 line of immortality?

Tasks that only need Perl knowledge
Remove duplication of test setup.

Schwern notes, that there's duplication of code - lots and lots of tests have
 some variation on the big
block of $Is_Foo checks. We can safely put this
 into a file, change it to build an %Is hash and
require it. Maybe just put
 it into test.pl. Throw in the handy tainting subroutines.

merge common code in installperl and installman
There are some common subroutines and a common BEGIN block in installperl
 and installman. These
should probably be merged. It would also be good to
 check for duplication in all the utility scripts
supplied in the source
 tarball. It might be good to move them all to a subdirectory, but this would

require careful checking to find all places that call them, and change those
 correctly.

common test code for timed bail out
Write portable self destruct code for tests to stop them burning CPU in
 infinite loops. This needs to
avoid using alarm, as some of the tests are
 testing alarm/sleep or timers.

POD -> HTML conversion in the core still sucks
Which is crazy given just how simple POD purports to be, and how simple HTML
 can be. It's not
actually as simple as it sounds, particularly with the
 flexibility POD allows for =item, but it would be
good to improve the
 visual appeal of the HTML generated, and to avoid it having any validation
 errors.
See also make HTML install work, as the layout of installation tree
 is needed to improve the
cross-linking.

The addition of Pod::Simple and its related modules may make this task
 easier to complete.

merge checkpods and podchecker
pod/checkpods.PL (and make check in the pod/ subdirectory)
 implements a very basic check for pod
files, but the errors it discovers
 aren't found by podchecker. Add this check to podchecker, get rid of

checkpods and have make check use podchecker.

perlmodlib.PL rewrite
Currently perlmodlib.PL needs to be run from a source directory where perl
 has been built, or some
modules won't be found, and others will be
 skipped. Make it run from a clean perl source tree (so it's
reproducible).

Parallel testing
(This probably impacts much more than the core: also the Test::Harness
 and TAP::* modules on
CPAN.)

Perl version 5.10.0 documentation - perltodo

Page 2http://perldoc.perl.org

The core regression test suite is getting ever more comprehensive, which has
 the side effect that it
takes longer to run. This isn't so good. Investigate
 whether it would be feasible to give the harness
script the option of
 running sets of tests in parallel. This would be useful for tests in t/op/*.t and
t/uni/*.t and maybe some sets of tests in lib/.

Questions to answer

1 How does screen layout work when you're running more than one test?

2 How does the caller of test specify how many tests to run in parallel?

3 How do setup/teardown tests identify themselves?

Pugs already does parallel testing - can their approach be re-used?

Make Schwern poorer
We should have tests for everything. When all the core's modules are tested,
 Schwern has promised
to donate to $500 to TPF. We may need volunteers to
 hold him upside down and shake vigorously in
order to actually extract the
 cash.

Improve the coverage of the core tests
Use Devel::Cover to ascertain the core modules's test coverage, then add
 tests that are currently
missing.

test B
A full test suite for the B module would be nice.

Deparse inlined constants
Code such as this

 use constant PI => 4;
 warn PI

will currently deparse as

 use constant ('PI', 4);
 warn 4;

because the tokenizer inlines the value of the constant subroutine PI.
 This allows various compile
time optimisations, such as constant folding
 and dead code elimination. Where these haven't
happened (such as the example
 above) it ought be possible to make B::Deparse work out the name
of the
 original constant, because just enough information survives in the symbol
 table to do this.
Specifically, the same scalar is used for the constant in
 the optree as is used for the constant
subroutine, so by iterating over all
 symbol tables and generating a mapping of SV address to constant
name, it
 would be possible to provide B::Deparse with this functionality.

A decent benchmark
perlbench seems impervious to any recent changes made to the perl core. It
 would be useful to
have a reasonable general benchmarking suite that roughly
 represented what current perl programs
do, and measurably reported whether
 tweaks to the core improve, degrade or don't really affect
performance, to
 guide people attempting to optimise the guts of perl. Gisle would welcome
 new tests
for perlbench.

fix tainting bugs
Fix the bugs revealed by running the test suite with the -t switch (via make test.taintwarn).

Perl version 5.10.0 documentation - perltodo

Page 3http://perldoc.perl.org

Dual life everything
As part of the "dists" plan, anything that doesn't belong in the smallest perl
 distribution needs to be
dual lifed. Anything else can be too. Figure out what
 changes would be needed to package that
module and its tests up for CPAN, and
 do so. Test it with older perl releases, and fix the problems you
find.

To make a minimal perl distribution, it's useful to look at t/lib/commonsense.t.

Improving threads::shared
Investigate whether threads::shared could share aggregates properly with
 only Perl level
changes to shared.pm

POSIX memory footprint
Ilya observed that use POSIX; eats memory like there's no tomorrow, and at
 various times worked to
cut it down. There is probably still fat to cut out -
 for example POSIX passes Exporter some very
memory hungry data structures.

embed.pl/makedef.pl
There is a script embed.pl that generates several header files to prefix
 all of Perl's symbols in a
consistent way, to provide some semblance of
 namespace support in C. Functions are declared in
embed.fnc, variables
 in interpvar.h. Quite a few of the functions and variables
 are conditionally
declared there, using #ifdef. However, embed.pl
 doesn't understand the C macros, so the rules
about which symbols are present
 when is duplicated in makedef.pl. Writing things twice is bad, m'kay.
It would be good to teach embed.pl to understand the conditional
 compilation, and hence remove
the duplication, and the mistakes it has caused.

use strict; and AutoLoad
Currently if you write

 package Whack;
 use AutoLoader 'AUTOLOAD';
 use strict;
 1;
 __END__
 sub bloop {
 print join (' ', No, strict, here), "!\n";
 }

then use strict; isn't in force within the autoloaded subroutines. It would
 be more consistent (and
less surprising) to arrange for all lexical pragmas
 in force at the __END__ block to be in force within
each autoloaded subroutine.

There's a similar problem with SelfLoader.

Tasks that need a little sysadmin-type knowledge
Or if you prefer, tasks that you would learn from, and broaden your skills
 base...

make HTML install work
There is an installhtml target in the Makefile. It's marked as
 "experimental". It would be good to
get this tested, make it work reliably, and
 remove the "experimental" tag. This would include

1 Checking that cross linking between various parts of the documentation works.
 In particular
that links work between the modules (files with POD in lib/)
 and the core documentation (files
in pod/)

2 Work out how to split perlfunc into chunks, preferably one per function
 group, preferably
with general case code that could be used elsewhere.
 Challenges here are correctly

Perl version 5.10.0 documentation - perltodo

Page 4http://perldoc.perl.org

identifying the groups of functions that go
 together, and making the right named external
cross-links point to the right
 page. Things to be aware of are -X, groups such as getpwnam to
endservent, two or more =items giving the different parameter lists, such
 as

 =item substr EXPR,OFFSET,LENGTH,REPLACEMENT
 =item substr EXPR,OFFSET,LENGTH
 =item substr EXPR,OFFSET

and different parameter lists having different meanings. (eg select)

compressed man pages
Be able to install them. This would probably need a configure test to see how
 the system does
compressed man pages (same directory/different directory?
 same filename/different filename), as well
as tweaking the installman script
 to compress as necessary.

Add a code coverage target to the Makefile
Make it easy for anyone to run Devel::Cover on the core's tests. The steps
 to do this manually are
roughly

do a normal Configure, but include Devel::Cover as a module to install
 (see INSTALL for
how to do this)

 make perl

 cd t; HARNESS_PERL_SWITCHES=-MDevel::Cover ./perl -I../lib
harness

Process the resulting Devel::Cover database

This just give you the coverage of the .pms. To also get the C level
 coverage you need to

Additionally tell Configure to use the appropriate C compiler flags for gcov

 make perl.gcov

(instead of make perl)

After running the tests run gcov to generate all the .gcov files.
 (Including down in the
subdirectories of ext/

(From the top level perl directory) run gcov2perl on all the .gcov files
 to get their stats into
the cover_db directory.

Then process the Devel::Cover database

It would be good to add a single switch to Configure to specify that you
 wanted to perform perl level
coverage, and another to specify C level
 coverage, and have Configure and the Makefile do all the
right things
 automatically.

Make Config.pm cope with differences between built and installed perl
Quite often vendors ship a perl binary compiled with their (pay-for)
 compilers. People install a free
compiler, such as gcc. To work out how to
 build extensions, Perl interrogates %Config, so in this
situation %Config describes compilers that aren't there, and extension building
 fails. This forces
people into choosing between re-compiling perl themselves
 using the compiler they have, or only
using modules that the vendor ships.

It would be good to find a way teach Config.pm about the installation setup,
 possibly involving
probing at install time or later, so that the %Config in
 a binary distribution better describes the
installed machine, when the
 installed machine differs from the build machine in some significant way.

Perl version 5.10.0 documentation - perltodo

Page 5http://perldoc.perl.org

linker specification files
Some platforms mandate that you provide a list of a shared library's external
 symbols to the linker, so
the core already has the infrastructure in place to
 do this for generating shared perl libraries. My
understanding is that the
 GNU toolchain can accept an optional linker specification file, and restrict

visibility just to symbols declared in that file. It would be good to extend makedef.pl to support this
format, and to provide a means within Configure to enable it. This would allow Unix users to test
that the
 export list is correct, and to build a perl that does not pollute the global
 namespace with
private symbols.

Cross-compile support
Currently Configure understands -Dusecrosscompile option. This option
 arranges for building
miniperl for TARGET machine, so this miniperl is
 assumed then to be copied to TARGET
machine and used as a replacement of full perl executable.

This could be done little differently. Namely miniperl should be built for
 HOST and then full perl
with extensions should be compiled for TARGET.
 This, however, might require extra trickery for
%Config: we have one config
 first for HOST and then another for TARGET. Tools like MakeMaker will
be
 mightily confused. Having around two different types of executables and
 libraries (HOST and
TARGET) makes life interesting for Makefiles and
 shell (and Perl) scripts. There is $Config{run},
normally empty, which
 can be used as an execution wrapper. Also note that in some

cross-compilation/execution environments the HOST and the TARGET do
 not see the same
filesystem(s), the $Config{run} may need to do some
 file/directory copying back and forth.

roffitall
Make pod/roffitall be updated by pod/buildtoc.

Tasks that need a little C knowledge
These tasks would need a little C knowledge, but don't need any specific
 background or experience
with XS, or how the Perl interpreter works

Exterminate PL_na!
PL_na festers still in the darkest corners of various typemap files.
 It needs to be exterminated,
replaced by a local variable of type STRLEN.

Modernize the order of directories in @INC
The way @INC is laid out by default, one cannot upgrade core (dual-life)
 modules without overwriting
files. This causes problems for binary
 package builders. One possible proposal is laid out in this

message: http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2002-04/msg02380.html.

-Duse32bit*
Natively 64-bit systems need neither -Duse64bitint nor -Duse64bitall.
 On these systems, it might be
the default compilation mode, and there
 is currently no guarantee that passing no use64bitall option to
the
 Configure process will build a 32bit perl. Implementing -Duse32bit*
 options would be nice for perl
5.12.

Make it clear from -v if this is the exact official release
Currently perl from p4/rsync ships with a patchlevel.h file that
 usually defines one local patch, of the
form "MAINT12345" or "RC1". The output
 of perl -v doesn't report that a perl isn't an official release,
and this
 information can get lost in bugs reports. Because of this, the minor version
 isn't bumped up
until RC time, to minimise the possibility of versions of perl
 escaping that believe themselves to be
newer than they actually are.

It would be useful to find an elegant way to have the "this is an interim
 maintenance release" or "this
is a release candidate" in the terse -v output,
 and have it so that it's easy for the pumpking to remove
this just as the
 release tarball is rolled up. This way the version pulled out of rsync would
 always say
"I'm a development release" and it would be safe to bump the
 reported minor version as soon as a

Perl version 5.10.0 documentation - perltodo

Page 6http://perldoc.perl.org

release ships, which would aid perl
 developers.

This task is really about thinking of an elegant way to arrange the C source
 such that it's trivial for the
Pumpking to flag "this is an official release"
 when making a tarball, yet leave the default source saying
"I'm not the
 official release".

Profile Perl - am I hot or not?
The Perl source code is stable enough that it makes sense to profile it,
 identify and optimise the
hotspots. It would be good to measure the
 performance of the Perl interpreter using free tools such as
cachegrind,
 gprof, and dtrace, and work to reduce the bottlenecks they reveal.

As part of this, the idea of pp_hot.c is that it contains the hot ops,
 the ops that are most commonly
used. The idea is that by grouping them, their
 object code will be adjacent in the executable, so they
have a greater chance
 of already being in the CPU cache (or swapped in) due to being near another
op
 already in use.

Except that it's not clear if these really are the most commonly used ops. So
 as part of exercising your
skills with coverage and profiling tools you might
 want to determine what ops really are the most
commonly used. And in turn
 suggest evictions and promotions to achieve a better pp_hot.c.

Allocate OPs from arenas
Currently all new OP structures are individually malloc()ed and free()d.
 All malloc implementations
have space overheads, and are now as fast as
 custom allocates so it would both use less memory
and less CPU to allocate
 the various OP structures from arenas. The SV arena code can probably be

re-used for this.

Note that Configuring perl with -Accflags=-DPL_OP_SLAB_ALLOC will use
 Perl_Slab_alloc() to
pack optrees into a contiguous block, which is
 probably superior to the use of OP arenas, esp. from a
cache locality
 standpoint. See Profile Perl - am I hot or not?.

Improve win32/wince.c
Currently, numerous functions look virtually, if not completely,
 identical in both win32/wince.c and
win32/win32.c files, which can't
 be good.

Use secure CRT functions when building with VC8 on Win32
Visual C++ 2005 (VC++ 8.x) deprecated a number of CRT functions on the basis
 that they were
"unsafe" and introduced differently named secure versions of
 them as replacements, e.g. instead of
writing

 FILE* f = fopen(__FILE__, "r");

one should now write

 FILE* f;
 errno_t err = fopen_s(&f, __FILE__, "r");

Currently, the warnings about these deprecations have been disabled by adding

-D_CRT_SECURE_NO_DEPRECATE to the CFLAGS. It would be nice to remove that
 warning
suppressant and actually make use of the new secure CRT functions.

There is also a similar issue with POSIX CRT function names like fileno having
 been deprecated in
favour of ISO C++ conformant names like _fileno. These
 warnings are also currently suppressed by
adding -D_CRT_NONSTDC_NO_DEPRECATE. It
 might be nice to do as Microsoft suggest here too,
although, unlike the secure
 functions issue, there is presumably little or no benefit in this case.

strcat(), strcpy(), strncat(), strncpy(), sprintf(), vsprintf()
Maybe create a utility that checks after each libperl.a creation that
 none of the above (nor sprintf(),
vsprintf(), or *SHUDDER* gets())
 ever creep back to libperl.a.

Perl version 5.10.0 documentation - perltodo

Page 7http://perldoc.perl.org

 nm libperl.a | ./miniperl -alne '$o = $F[0] if /:$/; print "$o $F[1]" if
$F[0] eq "U" && $F[1] =~ /^(?:strn?c(?:at|py)|v?sprintf|gets)$/'

Note, of course, that this will only tell whether your platform
 is using those naughty interfaces.

-D_FORTIFY_SOURCE=2, -fstack-protector
Recent glibcs support -D_FORTIFY_SOURCE=2 and recent gcc
 (4.1 onwards?) supports
-fstack-protector, both of which give
 protection against various kinds of buffer overflow
problems.
 These should probably be used for compiling Perl whenever available,
 Configure and/or
hints files should be adjusted to probe for the
 availability of these features and enable them as
appropriate.

Tasks that need a knowledge of XS
These tasks would need C knowledge, and roughly the level of knowledge of
 the perl API that comes
from writing modules that use XS to interface to
 C.

autovivification
Make all autovivification consistent w.r.t LVALUE/RVALUE and strict/no strict;

This task is incremental - even a little bit of work on it will help.

Unicode in Filenames
chdir, chmod, chown, chroot, exec, glob, link, lstat, mkdir, open,
 opendir, qx, readdir, readlink,
rename, rmdir, stat, symlink, sysopen,
 system, truncate, unlink, utime, -X. All these could potentially
accept
 Unicode filenames either as input or output (and in the case of system
 and qx Unicode in
general, as input or output to/from the shell).
 Whether a filesystem - an operating system pair
understands Unicode in
 filenames varies.

Known combinations that have some level of understanding include
 Microsoft NTFS, Apple HFS+ (In
Mac OS 9 and X) and Apple UFS (in Mac
 OS X), NFS v4 is rumored to be Unicode, and of course
Plan 9. How to
 create Unicode filenames, what forms of Unicode are accepted and used
 (UCS-2,
UTF-16, UTF-8), what (if any) is the normalization form used,
 and so on, varies. Finding the right level
of interfacing to Perl
 requires some thought. Remember that an OS does not implicate a
 filesystem.

(The Windows -C command flag "wide API support" has been at least
 temporarily retired in 5.8.1, and
the -C has been repurposed, see perlrun.)

Most probably the right way to do this would be this: Virtualize operating system access.

Unicode in %ENV
Currently the %ENV entries are always byte strings.
 See Virtualize operating system access.

Unicode and glob()
Currently glob patterns and filenames returned from File::Glob::glob()
 are always byte strings. See
Virtualize operating system access.

Unicode and lc/uc operators
Some built-in operators (lc, uc, etc.) behave differently, based on
 what the internal encoding of their
argument is. That should not be the
 case. Maybe add a pragma to switch behaviour.

use less 'memory'
Investigate trade offs to switch out perl's choices on memory usage.
 Particularly perl should be able to
give memory back.

This task is incremental - even a little bit of work on it will help.

Perl version 5.10.0 documentation - perltodo

Page 8http://perldoc.perl.org

Re-implement :unique in a way that is actually thread-safe
The old implementation made bad assumptions on several levels. A good 90%
 solution might be just
to make :unique work to share the string buffer
 of SvPVs. That way large constant strings can be
shared between ithreads,
 such as the configuration information in Config.

Make tainting consistent
Tainting would be easier to use if it didn't take documented shortcuts and
 allow taint to "leak"
everywhere within an expression.

readpipe(LIST)
system() accepts a LIST syntax (and a PROGRAM LIST syntax) to avoid
 running a shell. readpipe()
(the function behind qx//) could be similarly
 extended.

Audit the code for destruction ordering assumptions
Change 25773 notes

 /* Need to check SvMAGICAL, as during global destruction it may be that
 AvARYLEN(av) has been freed before av, and hence the SvANY() pointer
 is now part of the linked list of SV heads, rather than pointing to
 the original body. */
 /* FIXME - audit the code for other bugs like this one. */

adding the SvMAGICAL check to

 if (AvARYLEN(av) && SvMAGICAL(AvARYLEN(av))) {
 MAGIC *mg = mg_find (AvARYLEN(av), PERL_MAGIC_arylen);

Go through the core and look for similar assumptions that SVs have particular
 types, as all bets are
off during global destruction.

Extend PerlIO and PerlIO::Scalar
PerlIO::Scalar doesn't know how to truncate(). Implementing this
 would require extending the PerlIO
vtable.

Similarly the PerlIO vtable doesn't know about formats (write()), or
 about stat(), or chmod()/chown(),
utime(), or flock().

(For PerlIO::Scalar it's hard to see what e.g. mode bits or ownership
 would mean.)

PerlIO doesn't do directories or symlinks, either: mkdir(), rmdir(),
 opendir(), closedir(), seekdir(),
rewinddir(), glob(); symlink(),
 readlink().

See also Virtualize operating system access.

-C on the #! line
It should be possible to make -C work correctly if found on the #! line,
 given that all perl command line
options are strict ASCII, and -C changes
 only the interpretation of non-ASCII characters, and not for
the script file
 handle. To make it work needs some investigation of the ordering of function
 calls during
startup, and (by implication) a bit of tweaking of that order.

Propagate const outwards from Perl_moreswitches()
Change 32057 changed the parameter and return value of Perl_moreswitches()
 from <char *> to
<const char *>. It should now be possible to propagate
 const-correctness outwards to
S_parse_body(), Perl_moreswitches()
 and Perl_yylex().

Perl version 5.10.0 documentation - perltodo

Page 9http://perldoc.perl.org

Duplicate logic in S_method_common() and Perl_gv_fetchmethod_autoload()
A comment in S_method_common notes

	 /* This code tries to figure out just what went wrong with
	 gv_fetchmethod. It therefore needs to duplicate a lot of
	 the internals of that function. We can't move it inside
	 Perl_gv_fetchmethod_autoload(), however, since that would
	 cause UNIVERSAL->can("NoSuchPackage::foo") to croak, and we
	 don't want that.
	 */

If Perl_gv_fetchmethod_autoload gets rewritten to take (more) flag bits,
 then it ought to be
possible to move the logic from S_method_common to
 the "right" place. When making this change it
would probably be good to also
 pass in at least the method name length, if not also pre-computed
hash values
 when known. (I'm contemplating a plan to pre-compute hash values for common
 fixed
strings such as ISA and pass them in to functions.)

Organize error messages
Perl's diagnostics (error messages, see perldiag) could use
 reorganizing and formalizing so that each
error message has its
 stable-for-all-eternity unique id, categorized by severity, type, and
 subsystem.
(The error messages would be listed in a datafile outside
 of the Perl source code, and the source
code would only refer to the
 messages by the id.) This clean-up and regularizing should apply
 for all
croak() messages.

This would enable all sorts of things: easier translation/localization
 of the messages (though please
do keep in mind the caveats of Locale::Maketext about too straightforward approaches to
 translation),
filtering by severity, and instead of grepping for a
 particular error message one could look for a stable
error id. (Of
 course, changing the error messages by default would break all the
 existing software
depending on some particular error message...)

This kind of functionality is known as message catalogs. Look for
 inspiration for example in the
catgets() system, possibly even use it
 if available-- but only if available, all platforms will not
 have
catgets().

For the really pure at heart, consider extending this item to cover
 also the warning messages (see
perllexwarn, warnings.pl).

Tasks that need a knowledge of the interpreter
These tasks would need C knowledge, and knowledge of how the interpreter works,
 or a willingness
to learn.

UTF-8 revamp
The handling of Unicode is unclean in many places. For example, the regexp
 engine matches in
Unicode semantics whenever the string or the pattern is
 flagged as UTF-8, but that should not be
dependent on an internal storage
 detail of the string. Likewise, case folding behaviour is dependent
on the
 UTF8 internal flag being on or off.

Properly Unicode safe tokeniser and pads.
The tokeniser isn't actually very UTF-8 clean. use utf8; is a hack -
 variable names are stored in
stashes as raw bytes, without the utf-8 flag
 set. The pad API only takes a char * pointer, so that's all
bytes too. The
 tokeniser ignores the UTF-8-ness of PL_rsfp, or any SVs returned from
 source filters.
All this could be fixed.

state variable initialization in list context
Currently this is illegal:

 state ($a, $b) = foo();

Perl version 5.10.0 documentation - perltodo

Page 10http://perldoc.perl.org

In Perl 6, state ($a) = foo(); and (state $a) = foo(); have different
 semantics, which is
tricky to implement in Perl 5 as currently they produce
 the same opcode trees. The Perl 6 design is
firm, so it would be good to
 implement the necessary code in Perl 5. There are comments in
Perl_newASSIGNOP() that show the code paths taken by various assignment
 constructions
involving state variables.

Implement $value ~~ 0 .. $range
It would be nice to extend the syntax of the ~~ operator to also
 understand numeric (and maybe
alphanumeric) ranges.

A does() built-in
Like ref(), only useful. It would call the DOES method on objects; it
 would also tell whether something
can be dereferenced as an
 array/hash/etc., or used as a regexp, etc.
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2007-03/msg00481.html

Tied filehandles and write() don't mix
There is no method on tied filehandles to allow them to be called back by
 formats.

Attach/detach debugger from running program
The old perltodo notes "With gdb, you can attach the debugger to a running
 program if you pass the
process ID. It would be good to do this with the Perl
 debugger on a running Perl program, although
I'm not sure how it would be
 done." ssh and screen do this with named pipes in /tmp. Maybe we can
too.

Optimize away empty destructors
Defining an empty DESTROY method might be useful (notably in
 AUTOLOAD-enabled classes), but
it's still a bit expensive to call. That
 could probably be optimized.

LVALUE functions for lists
The old perltodo notes that lvalue functions don't work for list or hash
 slices. This would be good to
fix.

LVALUE functions in the debugger
The old perltodo notes that lvalue functions don't work in the debugger. This
 would be good to fix.

regexp optimiser optional
The regexp optimiser is not optional. It should configurable to be, to allow
 its performance to be
measured, and its bugs to be easily demonstrated.

delete &function
Allow to delete functions. One can already undef them, but they're still
 in the stash.

/w regex modifier
That flag would enable to match whole words, and also to interpolate
 arrays as alternations. With it,
/P/w would be roughly equivalent to:

 do { local $"='|'; /\b(?:P)\b/ }

See http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2007-01/msg00400.html
 for the
discussion.

optional optimizer
Make the peephole optimizer optional. Currently it performs two tasks as
 it walks the optree - genuine
peephole optimisations, and necessary fixups of
 ops. It would be good to find an efficient way to
switch out the
 optimisations whilst keeping the fixups.

Perl version 5.10.0 documentation - perltodo

Page 11http://perldoc.perl.org

You WANT *how* many
Currently contexts are void, scalar and list. split has a special mechanism in
 place to pass in the
number of return values wanted. It would be useful to
 have a general mechanism for this, backwards
compatible and little speed hit.
 This would allow proposals such as short circuiting sort to be
implemented
 as a module on CPAN.

lexical aliases
Allow lexical aliases (maybe via the syntax my \$alias = \$foo.

entersub XS vs Perl
At the moment pp_entersub is huge, and has code to deal with entering both
 perl and XS subroutines.
Subroutine implementations rarely change between perl and XS at run time, so investigate using 2
ops to enter subs (one for
 XS, one for perl) and swap between if a sub is redefined.

Self-ties
Self-ties are currently illegal because they caused too many segfaults. Maybe
 the causes of these
could be tracked down and self-ties on all types
 reinstated.

Optimize away @_
The old perltodo notes "Look at the "reification" code in av.c".

The yada yada yada operators
Perl 6's Synopsis 3 says:

The ... operator is the "yada, yada, yada" list operator, which is used as
 the body in function
prototypes. It complains bitterly (by calling fail)
 if it is ever executed. Variant ??? calls warn, and !!!
calls die.

Those would be nice to add to Perl 5. That could be done without new ops.

Virtualize operating system access
Implement a set of "vtables" that virtualizes operating system access
 (open(), mkdir(), unlink(),
readdir(), getenv(), etc.) At the very
 least these interfaces should take SVs as "name" arguments
instead of
 bare char pointers; probably the most flexible and extensible way
 would be for the
Perl-facing interfaces to accept HVs. The system
 needs to be per-operating-system and
per-file-system
 hookable/filterable, preferably both from XS and Perl level
 ("Files and Filesystems" in
perlport is good reading at this point,
 in fact, all of perlport is.)

This has actually already been implemented (but only for Win32),
 take a look at iperlsys.h and
win32/perlhost.h. While all Win32
 variants go through a set of "vtables" for operating system access,

non-Win32 systems currently go straight for the POSIX/UNIX-style
 system/library call. Similar system
as for Win32 should be
 implemented for all platforms. The existing Win32 implementation
 probably
does not need to survive alongside this proposed new
 implementation, the approaches could be
merged.

What would this give us? One often-asked-for feature this would
 enable is using Unicode for
filenames, and other "names" like %ENV,
 usernames, hostnames, and so forth.
 (See "When Unicode
Does Not Happen" in perlunicode.)

But this kind of virtualization would also allow for things like
 virtual filesystems, virtual networks, and
"sandboxes" (though as long
 as dynamic loading of random object code is allowed, not very safe

sandboxes since external code of course know not of Perl's vtables).
 An example of a smaller
"sandbox" is that this feature can be used to
 implement per-thread working directories: Win32 already
does this.

See also Extend PerlIO and PerlIO::Scalar.

Perl version 5.10.0 documentation - perltodo

Page 12http://perldoc.perl.org

Investigate PADTMP hash pessimisation
The peephole optimier converts constants used for hash key lookups to shared
 hash key scalars.
Under ithreads, something is undoing this work. See
 See
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2007-09/msg00793.html

Big projects
Tasks that will get your name mentioned in the description of the "Highlights
 of 5.12"

make ithreads more robust
Generally make ithreads more robust. See also iCOW

This task is incremental - even a little bit of work on it will help, and
 will be greatly appreciated.

One bit would be to write the missing code in sv.c:Perl_dirp_dup.

Fix Perl_sv_dup, et al so that threads can return objects.

iCOW
Sarathy and Arthur have a proposal for an improved Copy On Write which
 specifically will be able to
COW new ithreads. If this can be implemented
 it would be a good thing.

(?{...}) closures in regexps
Fix (or rewrite) the implementation of the /(?{...})/ closures.

A re-entrant regexp engine
This will allow the use of a regex from inside (?{ }), (??{ }) and
 (?(?{ })|) constructs.

Add class set operations to regexp engine
Apparently these are quite useful. Anyway, Jeffery Friedl wants them.

demerphq has this on his todo list, but right at the bottom.

